2,674 research outputs found

    A Spectral Study of the Linearized Boltzmann Equation for Diffusively Excited Granular Media

    Full text link
    In this work, we are interested in the spectrum of the diffusively excited granular gases equation, in a space inhomogeneous setting, linearized around an homogeneous equilibrium. We perform a study which generalizes to a non-hilbertian setting and to the inelastic case the seminal work of Ellis and Pinsky about the spectrum of the linearized Boltzmann operator. We first give a precise localization of the spectrum, which consists in an essential part lying on the left of the imaginary axis and a discrete spectrum, which is also of nonnegative real part for small values of the inelasticity parameter. We then give the so-called inelastic "dispersion relations", and compute an expansion of the branches of eigenvalues of the linear operator, for small Fourier (in space) frequencies and small inelasticity. One of the main novelty in this work, apart from the study of the inelastic case, is that we consider an exponentially weighted L1(m−1)L^1(m^{-1}) Banach setting instead of the classical L2(M1,0,1−1)L^2(\mathcal M_{1,0,1}^{-1}) Hilbertian case, endorsed with Gaussian weights. We prove in particular that the results of Ellis and Pinsky holds also in this space.Comment: 30 pages, 2 figure

    Blow up Analysis for Anomalous Granular Gases

    Full text link
    We investigate in this article the long-time behaviour of the solutions to the energy-dependant, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is "anomalous", in the sense that energy dissipation increases when temperature decreases. This allows the gas to cool down in finite time. We study existence and uniqueness of blow up profiles for this model, together with the trend to equilibrium and the cooling law associated, generalizing the classical Haff's Law for granular gases. To this end, we investigate the asymptotic behaviour of the inelastic Boltzmann equation with and without drift term by introducing new strongly "nonlinear" self-similar variables.Comment: 20

    Residual equilibrium schemes for time dependent partial differential equations

    Get PDF
    Many applications involve partial differential equations which admits nontrivial steady state solutions. The design of schemes which are able to describe correctly these equilibrium states may be challenging for numerical methods, in particular for high order ones. In this paper, inspired by micro-macro decomposition methods for kinetic equations, we present a class of schemes which are capable to preserve the steady state solution and achieve high order accuracy for a class of time dependent partial differential equations including nonlinear diffusion equations and kinetic equations. Extension to systems of conservation laws with source terms are also discussed.Comment: 23 pages, 12 figure

    Large-time Behavior of the Solutions to Rosenau Type Approximations to the Heat Equation

    Full text link
    In this paper we study the large-time behavior of the solution to a general Rosenau type approximation to the heat equation, by showing that the solution to this approximation approaches the fundamental solution of the heat equation at a sub-optimal rate. The result is valid in particular for the central differences scheme approximation of the heat equation, a property which to our knowledge has never been observed before.Comment: 20 page

    A Hierarchy of Hybrid Numerical Methods for Multi-Scale Kinetic Equations

    Get PDF
    In this paper, we construct a hierarchy of hybrid numerical methods for multi-scale kinetic equations based on moment realizability matrices, a concept introduced by Levermore, Morokoff and Nadiga. Following such a criterion, one can consider hybrid scheme where the hydrodynamic part is given either by the compressible Euler or Navier-Stokes equations, or even with more general models, such as the Burnett or super-Burnett systems.Comment: 27 pages, edit: typo and metadata chang

    Asymptotic Behavior of Thermal Non-Equilibrium Steady States for a Driven Chain of Anharmonic Oscillators

    Full text link
    We consider a model of heat conduction which consists of a finite nonlinear chain coupled to two heat reservoirs at different temperatures. We study the low temperature asymptotic behavior of the invariant measure. We show that, in this limit, the invariant measure is characterized by a variational principle. We relate the heat flow to the variational principle. The main technical ingredient is an extension of Freidlin-Wentzell theory to a class of degenerate diffusions.Comment: 40 page

    On steady-state preserving spectral methods for homogeneous Boltzmann equations

    Get PDF
    In this note, we present a general way to construct spectral methods for the collision operator of the Boltzmann equation which preserves exactly the Maxwellian steady-state of the system. We show that the resulting method is able to approximate with spectral accuracy the solution uniformly in time.Comment: 7 pages, 3 figure
    • …
    corecore